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Chaos Synchronization in the Belousov-Zhabotinsky Chemical
Reaction by Adaptive Control Scheme
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The adaptive synchronization scheme proposed by John and
Amritkar was employed into the Belousov-Zhabotinsky (BZ) 4-
variable-Montanator model system. By the parameter adjust-
ment, chaos synchronization has been obtained. Through cal-
culating the transient time, the optimal combination of the stiff-
ness constant and damping constant was obtained. Further-
more, the relationships among the transient time, conditional
Lyapunov exponents, the stiffness constant and damping con-
stant were discussed. Also, the BZ system with the adaptive
synchronization scheme might be used for the comnumication
purposes.
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Introduction

Recently synchronization between two structurally i-
dentical (but initial states maybe not identical) chaotic
systems has attracted a great deal of interest for its poten-
tial applications.' Various strategies have been applied
to carry out the synchronization. As a whole, synchro-
nization strategies can be classified into two categories:
one is the state variable regulation,® the other is the op-
eration parameter adjustment.®’’® On the variable regula-
tions, the most representative strategy is the Pecora-Car-
roll (PC) method.® In this method, a chaotic system,
whose largest Lyapunov exponent is positive, is divided
into a drive subsystem and the remainder subsystem whose
Lyapunov exponents are all negative. The chaotic system
is now coupled with a driven system, in which everything
is the same as that of the remainder subsystem in the
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chaotic system except for the initial values of state vari-
ables. Thus the trajectories from the driven subsystem can
be synchronized with that remainder subsystem. Neverthe-
less, due to the requirement of properly dividing the sys-
tem, this method is not always feasible. On the parameter
adjustment, a chaos controlling method of OGY® (Ott,
Grebogi and Yorke) has been used to synchronize struc-
turally identical chaotic systems. It was shown that by ap-
plying small, judiciously chosen, temporal-parameter per-
turbation to one of the chaotic systems, the trajectory
around a chaotic trajectory of the other system could be
stabilized and synchronization of the two systems was
achieved. The OGY method requires a permanent com-
puter monitoring of the state of the system and deals with
the Poincare map of the trajectory in phase space to eva-
luate the changes of the parameter.

In 1994, another convenient parameter regulation
scheme for synchronizing the evolution of a chaotic system
with a desired chaotic trajectory of another system through
adaptive control was proposed by John and Amritkar. ! It
is based on the idea of adaptive control suggested by Hu-
berman and Lumer (HL) ,'®*® which utilizes an error sig-
nal proportional to the difference between the goal output
and the actual output of the system. This error temm is
now associated with a term which is proportional to the
change of the parameters of the system, so that the pa-
rameters are adjusted to reduce the emor to zero. Since
the approach is merely to introduce changes in the system
parameters, all the state variables of the system evolve
freely. Also, a detailed knowledge of the underlying at-

Received November 27, 2001; revised March 22, 2002; accepted April 23, 2002.
Project supported by the Research Foundation of Nankai University to homecoming scholars.



754 Chaos synchronization

LI et al.

tractor of the dynamics is not necessary. The effectiveness
of this approach has been demonstrated by the well-known
Lorenz and Rossler systems.!! In this paper the approach
by modulating the system parameter (flow-rate) is em-
ployed into a real chemical reaction system model: 4-vari-
able Montanator model’*, and the identical synchroniza-
tion (IS), namely, the complete coincidence of the states
between two systems was obtained successfully.

Adaptive control scheme'!

A general description of the control procedure is as
follows: For a general N-dimensional autonomous dynam-
ical system: & = f(u, p), where u = (uy, uy,
*» ) are oper-
ation parameters. The system generating a desired trajec-
tory is viewed as the target system and the controlled sys-
tem as the response system. In order to synchronize the

uy) are state variables and gz = (pq, **

variable u of the response system with the variable u ™ of
the target system, a small perturbation in the parameter
u; is introduced;

Hi= —e(u—u*),-sgn[a%j}] - 8(p =) (1)

i

where ¢ and § are called the stiffness constant and the
damping constant, respectively, which mean that a bal-
anced relationship should exist between them in order to
achieve synchronization, u; denotes the state variable
whose evolution equation includes the adjustable parame-
ter p;, and ;" is the value of the parameter y; in the
target system. The function sgn(x) denotes the sign of
x. Frequently, except for a particular y;, other parame-
ters in the response system are kept the same as those in
the target system. In certain ranges of € and &, the re-
sponse system can be forced onto the desired trajectory of
the target system.

Model for the BZ reaction

Simulations are performed using a 4-variable Mon-
tanator model after Gyorgyi and Field. The kinetics is de-
scribed by differential equations:

d[Br~ ]/dt = - kyy[H* J[Br™ ][HBtO,] - kpy*
[BrO;~ J[H* J*[Br~ ] + k[ Ce(IV)]-
[BrMA] + kpg[MA- Joss[ BIMA] + ;-
([Br™ Ju-[Br~ 1)

d[HBrO,]/d¢ = - kp; [H* ][Br™ J[HBrO, ] + kpy*
[BrO;~ J[H* *[Br~ ] - 2kps-
[HBrO, > + 0. 5kpy [H* 1 ([ Cel,y, -
[Ce(TV) 1) [Br0Oy* ]o — 0.5kps
[HBrO, ][ Ce(IV) ] + k([ HBrO, 14 —
[HBrO,])

d[Ce(IV)]/dt = km[H+ ]([Ce]mt- [CC(IV)])'
[Br0,* oo — kps[ HBrO, ][ Ce(IV)] -
kps[MA][Ce(IV) ] - kp[Ce(IV) ]+
[BiMA] + k([ Ce(IV) 1 -
[Ce(IV)])

d[B:MA]/d¢ =2k [H* ][Br~ ][HBrO,] + kpp*
[BrO;~ ][H* J*[Br~ ] - kps[ HBrO, ]
— kpy[Ce(IV) ][ B-MA] - kpg-
[MA - Joss [BrMA ] + k¢ ([ B-MA 1.4 -
[BIMA])

where [MA*] = { — kps[BIMA] + {(kus[ BIMAD)? +
8karnkais[MA][Ce** J10%} /(dk )

[Br0,* ]y = [Br0,* Jgg = (ks [HBrO 1/ ki pg)%

and kps=2.4x 10 Lemol !*s™!, kuy;3=0.3 Lomol~!
87!, kag=3.0x10° L-mol™'+s7!, ky =0.858
™!, kg =4.2%x10 Lemol™!*s"1, the subscript mf
means mixed-feed, k; is the flow-rate. The parameters
and the initial conditions used are the same as Ref. 14.
The Montanator shows Period (P)-Chaos (C) series,
P1-C1-P2-C2-P3-C3-P4-, in which an appropriate value
of k¢ can be chosen for any prescribed dynamic behavior.
In this paper three chaotic regions have been investigated.
In every chaotic region, two flow-rates are chosen in the
investigation, i.e., Cl region: 6.16x 1074571, 6.17
x10"*s71; C2 region: 5.94x 107451, 5.95x 1074
s~ 15 C3 region; 5.71x107%s71, 5.74x 107451,

Numerical results

As mentioned, the adaptive control scheme has been
applied to Lorenz and Russler systems. In either system,
the controlled parameter exists only in one of the state
variable evolution equation. However, in the BZ-4-vari-
able-Montanator model, the unique adjustable parameter,
the flow-rate (%), occurs in all of the four state variable
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evolution equations, which may enhance the difficulty and
complexity of synchronization by the possibly different re-
quirements from four state variables on the flow-rate.
Therefore, in terms of the principle of adaptive control,
the operation rule for the parameter k; is constructed as
follows:

4 oY;
bm - oS- 1)
/ ¢ 2( )sgn[akf

8 (ke — k™) (2)

where ¥;* (i =1, 2, 3, 4) is the Y; variable of the
desired chaotic system, in which ¥, =[Br ], ¥, =
[HBrO,], Y3=[Ce'*], Y,=[BrMA], and k" is its
flow-rate. An obvious distinction between Eqs. (1) and
(2) is the construction of four pairs of variable difference
into the rule because in this 4-variable model parameter
k¢ occurs in every evolution equation.

In the process of simulation, the first 6.0 x 10* steps
have been neglected so as to avoid the transient effect.
Two sets of simulations were performed with running
lengths of 5.0 x 10° and 2.0 x 108 iterations, respective-
ly. The result shows that the longer the integration time,
the more combinations of ¢ and & for achieving synchro-
nization will be, but in some of the combinations quite
large transient time will be required and no practical im-
portance. Furthermore, our main goal is to investigate the
relationship between the average transient time and €, &,
and to explore the optimal combination of ¢ and &.
Therefore, computational time is set at 5.0 x 10° steps,
which is long enough to scan possible significant synchro-
nizations, and yields the maximum integration length
(Toax) of 1.75x 10% 5.

Both of the identical systems, with the same struc-
ture and parameter values but different initial state vari-
able values, and nonidentical systems, with the parame-
ters which were initially different in two structurally iden-
tical systems were investigated. Our numerical results
show that it is possible to synchronize the response system
with the desired chaotic orbit in both cases. Compared
with nonidentical systems, identical systems are more
subject to be synchronized (data not shown). The results
for nonidentical systems are presented in Fig. 1, that is,
the plots of evolution time versus the variable difference
(Y;-Y,") and parameter difference ( k;— k¢* ). Other
variable differences have the same behaviors (results not
shown) . The deviations decrease with time and the trajec-

tory of the response system finally synchronizes with that
of the target system.

The synchronization efficiency was investigated in
terms of the transient time 7, which is defined as the time
taken in order that the distance d(z) in the phase space
between the orbits of the two systems is of the order of as-
sumed precision, i.e., d(7) < 7, where d(z) is the
average distance as AX'? in Ref. 16 and p=10"1016
For a higher accuracy or lower 7, 7 will be longer, but
qualitative synchronizing features remain unchanged. The
synchronization domain is defined as the ranges of ¢ and
0 over which 7 is finite. For the values of each pair of ¢
and &, the average transient time r is the average of NI
= 100 independent runs with randomly chosen initial con-
centration differences from (Y;)q: ( =0.5, 0.5) x 10~2
x (Y;)o.

Fig. 2 shows the average transient time 7 as a func-
tion of & under certain values of ¢, and the interplay of
stifiness and damping constants is clearly seen. With the
smaller ¢ (¢ =1, 2, 3) (Fig. 2a), t decreases with the
increasing of &, then there appears a flat section of small
7. Continue increasing 8, 7 increases sharply with &.
When & exceeds the &, shown in the plot, 7 tends to
infinity. In a word, there is a synchronization domain
(Omin» Omax) in the plot of 8-7, and 7 diverges near the
domain boundary &, and J8,,,. At e =4.0, some novel
features emerge. The synchronization domain now con-
tains two segments (Fig. 2b). For smaller & of the first
segment, T ascends gradually, while for larger & of the
second segment, r descends inch by inch, then levels
off. The middle blank section of & means that no finite 7
is attained. When ¢ is increased to 5.0, the plot changes
again (Fig. 2c). For further high strength of ¢ (25—
50), the plots of 7-8 show the same form in Figs. 2d, 2e
and 2f, but they are different from Figs. 2b and 2¢. In
the range of even larger ¢ (100—200) (Fig. 2g), the
same behavior exists, and the length of the flat section in-
creases with the increasing of €.

Considering the influence of flow-rates on 7 for this
4-variable Montanator model, the most efficient combina-
tion of € and & is € =2.0 and 0 =4.5x 10~2, respec-
tively, which means that under this particular combina-
tion, the shortest 7 is available. The results in Fig. 2 are
for kg=5.71%10"*s " and k(" =6.16x 10457, i,
e., the two flow-rates belong to C3 and C1 region, re-
spectively. In addition, at the same k" above, simula-
tions are also performed in other several situations: (1)
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k¢=5.94x 107 57! (C2 region); (2) ks=6.17 x  or they are slightly different but in the same chaotic re-
10-*s~! (C1 region); (3) k;=6.16x10"*s~! (Cl  gion, or they are in entirely different chaotic region, the
region) . In the last situation, different initial values for similar behaviors have been observed. In every situation,
the state variables are used in the response and target sys-  the most efficient combination is ¢ =2.0 and & =4.5 x

tems. No matter the two flow-rates are the same exactly, 1072. Only small difference exists among 7 .
4
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Fig. 1 Differences of corresponding state variable and parameter between the response and the target system. The adjustment starts at 7 =
21000 s, that is, after 6 x 10 steps. (a) (¥, — ¥;*)-T; (b) (k;— k* )-T.
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Fig. 2 Plots of average transient time (z) as a function of damping constant & at distinct stiffness constants €. (a) € = 1.0 (square),
2.0 (triangle), 3.0 (dot); (b) e =4.0. The break of the X-axis means  is infinite when ¢ lies in this range; (c) e =5.0;
(d) €=25.0; (e) €=35.0; (f) €=50.0; (g) €=100.0 (square), 150.0 (iriangle), 200.0 (dot).
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Fig. 3 Effective ranges of damping constant & versus distinct stiffness constant €. (b) is the enlargement of (a) € of (1.0—5.0).

Fig. 3 shows the plot of e-8, in which Fig. 3b is
the enlargement of Fig. 3a at ¢ = 1—5. It can be seen
that with the increase of ¢, the effective domain of & is
enlarged in general except for the cases of two segments,
in which one segment is enlarged, and the other is re-
duced. In Fig. 3b, essentially only one segment appears
for each ¢, except for ¢ =4, there are two segments, but
the segment at lower & is short and maybe not significant
for further discussion. Although the flow-rate of the re-
sponse takes other values as mentioned above, the same

behavior can be obtained.

ok 4100
o -
X 475 2
g Ll k=
% {50 &
£ 77 2
- I
g ™ q25
-6 1 1 1 1 0.0
0 2 4 6 8 10
]
Fig. 4 Plot of maximum conditional Lyapunov Exponent

(CLE,) and the average transient time T versus
the damping constant & at € = 25.0. The solid line
with dots denotes & vs. CLE_,., while the solid line

with squares denotes & vs. 7.

In addition, the stability of response system was in-
vestigated by studying the maximum conditional Lyapunov
_Exponents (CLE,,,,) through the method of Wolf et al.
Although Carroll and Pecora et al.'® recently presented
that there are four other criteria for high-quality synchro-
nization, for the reason discussed more detail in Conclu-
sions, CLE,,, is used as the working criteria here. Fig.
4 shows the plot of CLE,,, and 7 versus & under the
same ¢ . Indeed 7 is not finite when CLE,,, >0, and the

critical value of & is determined by the condition of
CLE,,, =0. However, it is noticed that as & in the range
of 0.35—4.5, in spite of the negative CLE ., 7 is not
finite. In Ref. 6 it was pointed out that CLE_,, <0 in
the response system is not a sufficient but a necessary
condition. Therefore, although a negative value of
CLE,,,, would signal that the orbits of response system
starting from different initial conditions coalesce into the
same final orbits, and thus synchronization ensues,
which is not always the case. However, so long as
CLE,,, is negative and finite r is attained, the more neg-
ative the CLE,,, is, the smaller T is.
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Fig. 5 Plot of maximum conditional Lyapunov Exponent

(CLgna) and N(N = NS/NI) versus the damping
constant & at € = 25.0. The solid line denotes &
vs. CLE_,,, while the discrete makers denote & vs.
N. Circles and dots denote the results of running
5.0 x 10° and 2.0 x 10° iterations, respectively.
Where only dots are shown, they coincide with cir-
cles.

On the other hand, for § in the range of 0.35—
4.5, though 7 is not finite, which does not mean that no
synchronization is achieved under anyone of the possible
initial conditions. Thus the fraction N = NS/NI is calcu-
lated (Fig. 5). NS is the number of runs for which syn-
chronization is attained with the required precision and
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within the maximum integration length ( Tp,,) chosen
above, and NI is 100 which is the number of total inde-
pendent runs with randomly chosen initial conditions. At
given € and &, N =0 means that no synchronization is
attained for any of the runs performed, following that r is
longer than T, . From Fig. 5 it can be seen that in this
0 range, as Ty, increases, N tends to 1, i.e., syn-
chronization can still be achieved but with a lower effi-
ciency.

Application to communication

The greatest potential application of synchronization
is in the field of secure communication. Here the possi-
bility of using chaos synchronization to secure communi-
cation by a chemical reaction transmitter-receiver system
was investigated, because this type of communication
maybe one of the foundations in signal transition of living
phenomena. In the following it was shown that introduc-
ing the adaptive control scheme in the BZ system could be
used for communication.

The process of communicating a binary valued bit
stream by the adaptive control scheme in BZ system is
given in Fig. 6. The square waves with different duration
time are generated for the binary 0 and 1. Considering
the average transient time, each binary 1 state lasts for
175 s and each binary O state lasts for 3325 s. The pa-
rameter k;* of the transmitter is switched between
6.16x107*s7! and 6.20 x 10™* s~ ! (Fig. 6a). The
variation of k¢ in the receiver is shown in Fig. 6b. In
Fig. 6b there are obvious signal responses in the receiver
system corresponding to what comes from the transmitter.
It should be noted that because the transient time is quite
long in BZ system, the signal transfer pace has to be

0.8

0.6

04F

0.2 -’ ‘ \ ‘

0.0

30000 33000 36000 39000 42000
T(s)

ARF1.0X107 (s

slow. In addition, for either binary 1 state or binary 0
state, the length of duration times can influence the sig-
nal recovery significantly.

Conclusions

The adaptive control scheme has been employed to
the BZ chemical reaction systems and the chaos synchro-
nization has been achieved. According to the characteris-
tic of the specific chemical system, a perturbation equa-
tion for the operation parameter has been constructed.
The efficiency of the combinations of stiffness constant €
and damping constant & has been investigated based on
the average transient time 7. The results show that there
exists optimal combinations of ¢ and §. And the greater
the value of ¢ is, the larger the domain of & is. For a
given €, the change of 7 versus & is complicated. The
occurring of synchronization can partly be explained by
the CLE,,, of the response system as follows: so long as
CLE,x=0, no synchronization is attained, however for
CLE,.x <0, there are certain possibilities to achieve syn-
chronization. In Ref. 18 there are five criteria for identi-
fying high-quality synchronization in the presence of
noise. In this paper no noise is introduced specifically,
thus criterion 1, that is, CLE_,,, may be proper to be
used here. On the other hand, it is essential to consider
the requirement of all eigenvalues of the Jacobian matrix
with negative real parts at all points along the driving tra-
jectory. Also, from this numerical investigation, it is
possible to have positive eigenvalues occasionally at cer-
tain points along the trajectory for some initial conditions,
although the CLE,,, is negative. Further investigation on
this phenomenon is needed.
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30000 33000 36000 39000 42000
T(s)

Process of communicating a binary valued bit stream by adaptive control scheme in the BZ-4-variable-Montanator-Model. (a)

Akg* denotes the variation of k;* in the transmitter; (b) Ak denotes the variation of k; in the receiver.
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